HPILN: A feature learning framework for cross-modality person re-identification

7 Jun 2019 Jian-Wu Lin Hao Li

Most video surveillance systems use both RGB and infrared cameras, making it a vital technique to re-identify a person cross the RGB and infrared modalities. This task can be challenging due to both the cross-modality variations caused by heterogeneous images in RGB and infrared, and the intra-modality variations caused by the heterogeneous human poses, camera views, light brightness, etc... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet