Temporal Difference learning with function approximation has been widely used recently and has led to several successful results. However, compared with the original tabular-based methods, one major drawback of temporal difference learning with neural networks and other function approximators is that they tend to over-generalize across temporally successive states, resulting in slow convergence and even instability... (read more)
PDFMETHOD | TYPE | |
---|---|---|
🤖 No Methods Found | Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet |