https://paperswithcode.com/paper/negatives-make-a-positive-an-embarrassingly

Incomplete multi-view clustering (IMVC) aims to reveal shared clustering structures within multi-view data, where only partial views of the samples are available. Existing IMVC methods primarily suffer from two issues: 1) Imputation-based methods inevitably introduce inaccurate imputations, which in turn degrade clustering performance; 2) Imputation-free methods are susceptible to unbalanced information among views and fail to fully exploit shared information. To address these issues, we propose a novel method based on variational autoencoders. Specifically, we adopt multiple view-specific encoders to extract information from each view and utilize the Product-of-Experts approach to efficiently aggregate information to obtain the common representation. To enhance the shared information in the common representation, we introduce a coherence objective to mitigate the influence of information imbalance. By incorporating the Mixture-of-Gaussians prior information into the latent representation, our proposed method is able to learn the common representation with clustering-friendly structures. Extensive experiments on four datasets show that our method achieves competitive clustering performance compared with state-of-the-art methods.

PDF

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here