Human Motion Detection Based on Dual-Graph and Weighted Nuclear Norm Regularizations

10 Apr 2023  ·  Jing Qin, Biyun Xie ·

Motion detection has been widely used in many applications, such as surveillance and robotics. Due to the presence of the static background, a motion video can be decomposed into a low-rank background and a sparse foreground. Many regularization techniques that preserve low-rankness of matrices can therefore be imposed on the background. In the meanwhile, geometry-based regularizations, such as graph regularizations, can be imposed on the foreground. Recently, weighted regularization techniques including the weighted nuclear norm regularization have been proposed in the image processing community to promote adaptive sparsity while achieving efficient performance. In this paper, we propose a robust dual graph regularized moving object detection model based on a novel weighted nuclear norm regularization and spatiotemporal graph Laplacians. Numerical experiments on realistic human motion data sets have demonstrated the effectiveness and robustness of this approach in separating moving objects from background, and the enormous potential in robotic applications.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here