Hybrid Actor-Critic Reinforcement Learning in Parameterized Action Space

4 Mar 2019  ·  Zhou Fan, Rui Su, Wei-Nan Zhang, Yong Yu ·

In this paper we propose a hybrid architecture of actor-critic algorithms for reinforcement learning in parameterized action space, which consists of multiple parallel sub-actor networks to decompose the structured action space into simpler action spaces along with a critic network to guide the training of all sub-actor networks. While this paper is mainly focused on parameterized action space, the proposed architecture, which we call hybrid actor-critic, can be extended for more general action spaces which has a hierarchical structure. We present an instance of the hybrid actor-critic architecture based on proximal policy optimization (PPO), which we refer to as hybrid proximal policy optimization (H-PPO). Our experiments test H-PPO on a collection of tasks with parameterized action space, where H-PPO demonstrates superior performance over previous methods of parameterized action reinforcement learning.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here