Hybrid gene selection approach using XGBoost and multi-objective genetic algorithm for cancer classification

30 May 2021  ·  Xiongshi Deng, Min Li, Shaobo Deng, Lei Wang ·

Microarray gene expression data are often accompanied by a large number of genes and a small number of samples. However, only a few of these genes are relevant to cancer, resulting in signigicant gene selection challenges. Hence, we propose a two-stage gene selection approach by combining extreme gradient boosting (XGBoost) and a multi-objective optimization genetic algorithm (XGBoost-MOGA) for cancer classification in microarray datasets. In the first stage, the genes are ranked use an ensemble-based feature selection using XGBoost. This stage can effectively remove irrelevant genes and yield a group comprising the most relevant genes related to the class. In the second stage, XGBoost-MOGA searches for an optimal gene subset based on the most relevant genes's group using a multi-objective optimization genetic algorithm. We performed comprehensive experiments to compare XGBoost-MOGA with other state-of-the-art feature selection methods using two well-known learning classifiers on 13 publicly available microarray expression datasets. The experimental results show that XGBoost-MOGA yields significantly better results than previous state-of-the-art algorithms in terms of various evaluation criteria, such as accuracy, F-score, precision, and recall.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods