HybridGazeNet: Geometric model guided Convolutional Neural Networks for gaze estimation

23 Nov 2021  ·  Shaobo Guo, Xiao Jiang, Zhizhong Su, Rui Wu, Xin Wang ·

As a critical cue for understanding human intention, human gaze provides a key signal for Human-Computer Interaction(HCI) applications. Appearance-based gaze estimation, which directly regresses the gaze vector from eye images, has made great progress recently based on Convolutional Neural Networks(ConvNets) architecture and open-source large-scale gaze datasets. However, encoding model-based knowledge into CNN model to further improve the gaze estimation performance remains a topic that needs to be explored. In this paper, we propose HybridGazeNet(HGN), a unified framework that encodes the geometric eyeball model into the appearance-based CNN architecture explicitly. Composed of a multi-branch network and an uncertainty module, HybridGazeNet is trained using a hyridized strategy. Experiments on multiple challenging gaze datasets shows that HybridGazeNet has better accuracy and generalization ability compared with existing SOTA methods. The code will be released later.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here