Robust Hypergraph Clustering via Convex Relaxation of Truncated MLE

23 Mar 2020Jeonghwan LeeDaesung KimHye Won Chung

We study hypergraph clustering in the weighted $d$-uniform hypergraph stochastic block model ($d$-WHSBM), where each edge consisting of $d$ nodes from the same community has higher expected weight than the edges consisting of nodes from different communities. We propose a new hypergraph clustering algorithm, called CRTMLE, and provide its performance guarantee under $d$-WHSBM for general parameter regimes... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet