Hypformer: Exploring Efficient Hyperbolic Transformer Fully in Hyperbolic Space

1 Jul 2024  ·  Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, Rex Ying ·

Hyperbolic geometry have shown significant potential in modeling complex structured data, particularly those with underlying tree-like and hierarchical structures. Despite the impressive performance of various hyperbolic neural networks across numerous domains, research on adapting the Transformer to hyperbolic space remains limited. Previous attempts have mainly focused on modifying self-attention modules in the Transformer. However, these efforts have fallen short of developing a complete hyperbolic Transformer. This stems primarily from: (i) the absence of well-defined modules in hyperbolic space, including linear transformation layers, LayerNorm layers, activation functions, dropout operations, etc. (ii) the quadratic time complexity of the existing hyperbolic self-attention module w.r.t the number of input tokens, which hinders its scalability. To address these challenges, we propose, Hypformer, a novel hyperbolic Transformer based on the Lorentz model of hyperbolic geometry. In Hypformer, we introduce two foundational blocks that define the essential modules of the Transformer in hyperbolic space. Furthermore, we develop a linear self-attention mechanism in hyperbolic space, enabling hyperbolic Transformer to process billion-scale graph data and long-sequence inputs for the first time. Our experimental results confirm the effectiveness and efficiency of Hypformer across various datasets, demonstrating its potential as an effective and scalable solution for large-scale data representation and large models.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods