I Don't Need u: Identifiable Non-Linear ICA Without Side Information

9 Jun 2021  ·  Matthew Willetts, Brooks Paige ·

In this paper, we investigate the algorithmic stability of unsupervised representation learning with deep generative models, as a function of repeated re-training on the same input data. Algorithms for learning low dimensional linear representations -- for example principal components analysis (PCA), or linear independent components analysis (ICA) -- come with guarantees that they will always reveal the same latent representations (perhaps up to an arbitrary rotation or permutation). Unfortunately, for non-linear representation learning, such as in a variational auto-encoder (VAE) model trained by stochastic gradient descent, we have no such guarantees. Recent work on identifiability in non-linear ICA have introduced a family of deep generative models that have identifiable latent representations, achieved by conditioning on side information (e.g. informative labels). We empirically evaluate the stability of these models under repeated re-estimation of parameters, and compare them to both standard VAEs and deep generative models which learn to cluster in their latent space. Surprisingly, we discover side information is not necessary for algorithmic stability: using standard quantitative measures of identifiability, we find deep generative models with latent clusterings are empirically identifiable to the same degree as models which rely on auxiliary labels. We relate these results to the possibility of identifiable non-linear ICA.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods