"I'm Not Mad": Commonsense Implications of Negation and Contradiction

13 Apr 2021  ·  Liwei Jiang, Antoine Bosselut, Chandra Bhagavatula, Yejin Choi ·

Natural language inference requires reasoning about contradictions, negations, and their commonsense implications. Given a simple premise (e.g., "I'm mad at you"), humans can reason about the varying shades of contradictory statements ranging from straightforward negations ("I'm not mad at you") to commonsense contradictions ("I'm happy"). Moreover, these negated or contradictory statements shift the commonsense implications of the original premise in nontrivial ways. For example, while "I'm mad" implies "I'm unhappy about something," negating the premise (i.e., "I'm not mad") does not necessarily negate the corresponding commonsense implications. In this paper, we present the first comprehensive study focusing on commonsense implications of negated statements and contradictions. We introduce ANION1, a new commonsense knowledge graph with 624K if-then rules focusing on negated and contradictory events. We then present joint generative and discriminative inference models for this new resource, providing novel empirical insights on how logical negations and commonsense contradictions reshape the commonsense implications of their original premises.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here