Ideal Abstractions for Decision-Focused Learning

29 Mar 2023  ·  Michael Poli, Stefano Massaroli, Stefano Ermon, Bryan Wilder, Eric Horvitz ·

We present a methodology for formulating simplifying abstractions in machine learning systems by identifying and harnessing the utility structure of decisions. Machine learning tasks commonly involve high-dimensional output spaces (e.g., predictions for every pixel in an image or node in a graph), even though a coarser output would often suffice for downstream decision-making (e.g., regions of an image instead of pixels). Developers often hand-engineer abstractions of the output space, but numerous abstractions are possible and it is unclear how the choice of output space for a model impacts its usefulness in downstream decision-making. We propose a method that configures the output space automatically in order to minimize the loss of decision-relevant information. Taking a geometric perspective, we formulate a step of the algorithm as a projection of the probability simplex, termed fold, that minimizes the total loss of decision-related information in the H-entropy sense. Crucially, learning in the abstracted outcome space requires less data, leading to a net improvement in decision quality. We demonstrate the method in two domains: data acquisition for deep neural network training and a closed-loop wildfire management task.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here