Identification and Model Testing in Linear Structural Equation Models using Auxiliary Variables

We developed a novel approach to identification and model testing in linear structural equation models (SEMs) based on auxiliary variables (AVs), which generalizes a widely-used family of methods known as instrumental variables. The identification problem is concerned with the conditions under which causal parameters can be uniquely estimated from an observational, non-causal covariance matrix... (read more)

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet