Identifying Physical Law of Hamiltonian Systems via Meta-Learning

23 Feb 2021  ·  Seungjun Lee, Haesang Yang, Woojae Seong ·

Hamiltonian mechanics is an effective tool to represent many physical processes with concise yet well-generalized mathematical expressions. A well-modeled Hamiltonian makes it easy for researchers to analyze and forecast many related phenomena that are governed by the same physical law. However, in general, identifying a functional or shared expression of the Hamiltonian is very difficult. It requires carefully designed experiments and the researcher's insight that comes from years of experience. We propose that meta-learning algorithms can be potentially powerful data-driven tools for identifying the physical law governing Hamiltonian systems without any mathematical assumptions on the representation, but with observations from a set of systems governed by the same physical law. We show that a well meta-trained learner can identify the shared representation of the Hamiltonian by evaluating our method on several types of physical systems with various experimental settings.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here