Identity testing for Mallows model

In this paper, we devise identity tests for ranking data that is generated from Mallows model both in the \emph{asymptotic} and \emph{non-asymptotic} settings. First we consider the case when the central ranking is known, and devise two algorithms for testing the spread parameter of the Mallows model. The first one is obtained by constructing a Uniformly Most Powerful Unbiased (UMPU) test in the asymptotic setting and then converting it into a sample-optimal non-asymptotic identity test. The resulting test is, however, impractical even for medium sized data, because it requires computing the distribution of the sufficient statistic. The second non-asymptotic test is derived from an optimal learning algorithm for the Mallows model. This test is both easy to compute and is sample-optimal for a wide range of parameters. Next, we consider testing Mallows models for the unknown central ranking case. This case can be tackled in the asymptotic setting by introducing a bias that exponentially decays with the sample size. We support all our findings with extensive numerical experiments and show that the proposed tests scale gracefully with the number of items to be ranked.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here