Image Deblurring with Domain Generalizable Diffusion Models

4 Dec 2022  ·  Mengwei Ren, Mauricio Delbracio, Hossein Talebi, Guido Gerig, Peyman Milanfar ·

Diffusion Probabilistic Models (DPMs) have recently been employed for image deblurring. DPMs are trained via a stochastic denoising process that maps Gaussian noise to the high-quality image, conditioned on the concatenated blurry input. Despite their high-quality generated samples, image-conditioned Diffusion Probabilistic Models (icDPM) rely on synthetic pairwise training data (in-domain), with potentially unclear robustness towards real-world unseen images (out-of-domain). In this work, we investigate the generalization ability of icDPMs in deblurring, and propose a simple but effective guidance to significantly alleviate artifacts, and improve the out-of-distribution performance. Particularly, we propose to first extract a multiscale domain-generalizable representation from the input image that removes domain-specific information while preserving the underlying image structure. The representation is then added into the feature maps of the conditional diffusion model as an extra guidance that helps improving the generalization. To benchmark, we focus on out-of-distribution performance by applying a single-dataset trained model to three external and diverse test sets. The effectiveness of the proposed formulation is demonstrated by improvements over the standard icDPM, as well as state-of-the-art performance on perceptual quality and competitive distortion metrics compared to existing methods.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.