Image-GS: Content-Adaptive Image Representation via 2D Gaussians

Neural image representations have recently emerged as a promising technique for storing, streaming, and rendering visual data. Coupled with learning-based workflows, these novel representations have demonstrated remarkable visual fidelity and memory efficiency. However, existing neural image representations often rely on explicit uniform data structures without content adaptivity or computation-intensive implicit models, limiting their adoption in real-time graphics applications. Inspired by recent advances in radiance field rendering, we propose Image-GS, a content-adaptive image representation. Using anisotropic 2D Gaussians as the basis, Image-GS shows high memory efficiency, supports fast random access, and offers a natural level of detail stack. Leveraging a tailored differentiable renderer, Image-GS fits a target image by adaptively allocating and progressively optimizing a set of 2D Gaussians. The generalizable efficiency and fidelity of Image-GS are validated against several recent neural image representations and industry-standard texture compressors on a diverse set of images. Notably, its memory and computation requirements solely depend on and linearly scale with the number of 2D Gaussians, providing flexible controls over the trade-off between visual fidelity and run-time efficiency. We hope this research offers insights for developing new applications that require adaptive quality and resource control, such as machine perception, asset streaming, and content generation.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods