Imperial College London Submission to VATEX Video Captioning Task

16 Oct 2019Ozan CaglayanZixiu WuPranava MadhyasthaJosiah WangLucia Specia

This paper describes the Imperial College London team's submission to the 2019' VATEX video captioning challenge, where we first explore two sequence-to-sequence models, namely a recurrent (GRU) model and a transformer model, which generate captions from the I3D action features. We then investigate the effect of dropping the encoder and the attention mechanism and instead conditioning the GRU decoder over two different vectorial representations: (i) a max-pooled action feature vector and (ii) the output of a multi-label classifier trained to predict visual entities from the action features... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.