Implicit Deep Learning
Implicit deep learning prediction rules generalize the recursive rules of feedforward neural networks. Such rules are based on the solution of a fixed-point equation involving a single vector of hidden features, which is thus only implicitly defined. The implicit framework greatly simplifies the notation of deep learning, and opens up many new possibilities, in terms of novel architectures and algorithms, robustness analysis and design, interpretability, sparsity, and network architecture optimization.
PDF AbstractTasks
Datasets
Add Datasets
introduced or used in this paper
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.
Methods
No methods listed for this paper. Add
relevant methods here