Implicit Regularization of Accelerated Methods in Hilbert Spaces

NeurIPS 2019  ·  Nicolò Pagliana, Lorenzo Rosasco ·

We study learning properties of accelerated gradient descent methods for linear least-squares in Hilbert spaces. We analyze the implicit regularization properties of Nesterov acceleration and a variant of heavy-ball in terms of corresponding learning error bounds. Our results show that acceleration can provides faster bias decay than gradient descent, but also suffers of a more unstable behavior. As a result acceleration cannot be in general expected to improve learning accuracy with respect to gradient descent, but rather to achieve the same accuracy with reduced computations. Our theoretical results are validated by numerical simulations. Our analysis is based on studying suitable polynomials induced by the accelerated dynamics and combining spectral techniques with concentration inequalities.

PDF Abstract NeurIPS 2019 PDF NeurIPS 2019 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here