Improved Accent Classification Combining Phonetic Vowels with Acoustic Features

24 Feb 2016  ·  Zhenhao Ge ·

Researches have shown accent classification can be improved by integrating semantic information into pure acoustic approach. In this work, we combine phonetic knowledge, such as vowels, with enhanced acoustic features to build an improved accent classification system. The classifier is based on Gaussian Mixture Model-Universal Background Model (GMM-UBM), with normalized Perceptual Linear Predictive (PLP) features. The features are further optimized by Principle Component Analysis (PCA) and Hetroscedastic Linear Discriminant Analysis (HLDA). Using 7 major types of accented speech from the Foreign Accented English (FAE) corpus, the system achieves classification accuracy 54% with input test data as short as 20 seconds, which is competitive to the state of the art in this field.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here