Improved Analysis for Dynamic Regret of Strongly Convex and Smooth Functions

10 Jun 2020  ·  Peng Zhao, Lijun Zhang ·

In this paper, we present an improved analysis for dynamic regret of strongly convex and smooth functions. Specifically, we investigate the Online Multiple Gradient Descent (OMGD) algorithm proposed by Zhang et al. (2017). The original analysis shows that the dynamic regret of OMGD is at most $\mathcal{O}(\min\{\mathcal{P}_T,\mathcal{S}_T\})$, where $\mathcal{P}_T$ and $\mathcal{S}_T$ are path-length and squared path-length that measures the cumulative movement of minimizers of the online functions. We demonstrate that by an improved analysis, the dynamic regret of OMGD can be improved to $\mathcal{O}(\min\{\mathcal{P}_T,\mathcal{S}_T,\mathcal{V}_T\})$, where $\mathcal{V}_T$ is the function variation of the online functions. Note that the quantities of $\mathcal{P}_T, \mathcal{S}_T, \mathcal{V}_T$ essentially reflect different aspects of environmental non-stationarity -- they are not comparable in general and are favored in different scenarios. Therefore, the dynamic regret presented in this paper actually achieves a \emph{best-of-three-worlds} guarantee and is strictly tighter than previous results.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here