Improved and Robust Controversy Detection in General Web Pages Using Semantic Approaches under Large Scale Conditions

2 Dec 2018  ·  Jasper Linmans, Bob van de Velde, Evangelos Kanoulas ·

Detecting controversy in general web pages is a daunting task, but increasingly essential to efficiently moderate discussions and effectively filter problematic content. Unfortunately, controversies occur across many topics and domains, with great changes over time. This paper investigates neural classifiers as a more robust methodology for controversy detection in general web pages. Current models have often cast controversy detection on general web pages as Wikipedia linking, or exact lexical matching tasks. The diverse and changing nature of controversies suggest that semantic approaches are better able to detect controversy. We train neural networks that can capture semantic information from texts using weak signal data. By leveraging the semantic properties of word embeddings we robustly improve on existing controversy detection methods. To evaluate model stability over time and to unseen topics, we asses model performance under varying training conditions to test cross-temporal, cross-topic, cross-domain performance and annotator congruence. In doing so, we demonstrate that weak-signal based neural approaches are closer to human estimates of controversy and are more robust to the inherent variability of controversies.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here