Improved Crowding Distance for NSGA-II

30 Nov 2018Xiangxiang ChuXinjie Yu

Non-dominated sorting genetic algorithm II (NSGA-II) does well in dealing with multi-objective problems. When evaluating validity of an algorithm for multi-objective problems, two kinds of indices are often considered simultaneously, i.e. the convergence to Pareto Front and the distribution characteristic... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet