Improved Frame Level Features and SVM Supervectors Approach for the Recogniton of Emotional States from Speech: Application to categorical and dimensional states

The purpose of speech emotion recognition system is to classify speakers utterances into different emotional states such as disgust, boredom, sadness, neutral and happiness. Speech features that are commonly used in speech emotion recognition rely on global utterance level prosodic features... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet