Improving Aspect-Level Sentiment Analysis with Aspect Extraction

Aspect-based sentiment analysis (ABSA), a popular research area in NLP has two distinct parts -- aspect extraction (AE) and labeling the aspects with sentiment polarity (ALSA). Although distinct, these two tasks are highly correlated. The work primarily hypothesize that transferring knowledge from a pre-trained AE model can benefit the performance of ALSA models. Based on this hypothesis, word embeddings are obtained during AE and subsequently, feed that to the ALSA model. Empirically, this work show that the added information significantly improves the performance of three different baseline ALSA models on two distinct domains. This improvement also translates well across domains between AE and ALSA tasks.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.