Improving Automatic Source Code Summarization via Deep Reinforcement Learning

17 Nov 2018Yao WanZhou ZhaoMin YangGuandong XuHaochao YingJian WuPhilip S. Yu

Code summarization provides a high level natural language description of the function performed by code, as it can benefit the software maintenance, code categorization and retrieval. To the best of our knowledge, most state-of-the-art approaches follow an encoder-decoder framework which encodes the code into a hidden space and then decode it into natural language space, suffering from two major drawbacks: a) Their encoders only consider the sequential content of code, ignoring the tree structure which is also critical for the task of code summarization, b) Their decoders are typically trained to predict the next word by maximizing the likelihood of next ground-truth word with previous ground-truth word given... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet