Improving Event Duration Prediction via Time-aware Pre-training

End-to-end models in NLP rarely encode external world knowledge about length of time. We introduce two effective models for duration prediction, which incorporate external knowledge by reading temporal-related news sentences (time-aware pre-training)... Specifically, one model predicts the range/unit where the duration value falls in (R-pred); and the other predicts the exact duration value E-pred. Our best model -- E-pred, substantially outperforms previous work, and captures duration information more accurately than R-pred. We also demonstrate our models are capable of duration prediction in the unsupervised setting, outperforming the baselines. read more

PDF Abstract Findings of 2020 PDF Findings of 2020 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here