Improving generalization by regularizing in $L^2$ function space

ICLR 2018  ·  Ari S. Benjamin, Konrad Kording ·

Learning rules for neural networks necessarily include some form of regularization. Most regularization techniques are conceptualized and implemented in the space of parameters. However, it is also possible to regularize in the space of functions. Here, we propose to measure networks in an $L^2$ Hilbert space, and test a learning rule that regularizes the distance a network can travel through $L^2$-space each update. This approach is inspired by the slow movement of gradient descent through parameter space as well as by the natural gradient, which can be derived from a regularization term upon functional change. The resulting learning rule, which we call Hilbert-constrained gradient descent (HCGD), is thus closely related to the natural gradient but regularizes a different and more calculable metric over the space of functions. Experiments show that the HCGD is efficient and leads to considerably better generalization.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here