Improving Generalization of Transfer Learning Across Domains Using Spatio-Temporal Features in Autonomous Driving

15 Mar 2021  ·  Shivam Akhauri, Laura Zheng, Tom Goldstein, Ming Lin ·

Practical learning-based autonomous driving models must be capable of generalizing learned behaviors from simulated to real domains, and from training data to unseen domains with unusual image properties. In this paper, we investigate transfer learning methods that achieve robustness to domain shifts by taking advantage of the invariance of spatio-temporal features across domains... In this paper, we propose a transfer learning method to improve generalization across domains via transfer of spatio-temporal features and salient data augmentation. Our model uses a CNN-LSTM network with Inception modules for image feature extraction. Our method runs in two phases: Phase 1 involves training on source domain data, while Phase 2 performs training on target domain data that has been supplemented by feature maps generated using the Phase 1 model. Our model significantly improves performance in unseen test cases for both simulation-to-simulation transfer as well as simulation-to-real transfer by up to +37.3\% in test accuracy and up to +40.8\% in steering angle prediction, compared to other SOTA methods across multiple datasets. read more

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods