Improving Human Sequential Decision-Making with Reinforcement Learning

19 Aug 2021  ·  Hamsa Bastani, Osbert Bastani, Wichinpong Park Sinchaisri ·

Workers spend a significant amount of time learning how to make good decisions. Evaluating the efficacy of a given decision, however, can be complicated -- e.g., decision outcomes are often long-term and relate to the original decision in complex ways. Surprisingly, even though learning good decision-making strategies is difficult, they can often be expressed in simple and concise forms. Focusing on sequential decision-making, we design a novel machine learning algorithm that is capable of extracting "best practices" from trace data and conveying its insights to humans in the form of interpretable "tips". Our algorithm selects the tip that best bridges the gap between the actions taken by human workers and those taken by the optimal policy in a way that accounts for which actions are consequential for achieving higher performance. We evaluate our approach through a series of randomized controlled experiments where participants manage a virtual kitchen. Our experiments show that the tips generated by our algorithm can significantly improve human performance relative to intuitive baselines. In addition, we discuss a number of empirical insights that can help inform the design of algorithms intended for human-AI interfaces. For instance, we find evidence that participants do not simply blindly follow our tips; instead, they combine them with their own experience to discover additional strategies for improving performance.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here