Improving Hyperspectral Adversarial Robustness Under Multiple Attacks

28 Oct 2022  ·  Nicholas Soucy, Salimeh Yasaei Sekeh ·

Semantic segmentation models classifying hyperspectral images (HSI) are vulnerable to adversarial examples. Traditional approaches to adversarial robustness focus on training or retraining a single network on attacked data, however, in the presence of multiple attacks these approaches decrease in performance compared to networks trained individually on each attack. To combat this issue we propose an Adversarial Discriminator Ensemble Network (ADE-Net) which focuses on attack type detection and adversarial robustness under a unified model to preserve per data-type weight optimally while robustifiying the overall network. In the proposed method, a discriminator network is used to separate data by attack type into their specific attack-expert ensemble network.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here