Improving Image Clustering With Multiple Pretrained CNN Feature Extractors

20 Jul 2018Joris GuérinByron Boots

For many image clustering problems, replacing raw image data with features extracted by a pretrained convolutional neural network (CNN), leads to better clustering performance. However, the specific features extracted, and, by extension, the selected CNN architecture, can have a major impact on the clustering results... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet