Improving Natural Language Interaction with Robots Using Advice

NAACL 2019  ·  Nikhil Mehta, Dan Goldwasser ·

Over the last few years, there has been growing interest in learning models for physically grounded language understanding tasks, such as the popular blocks world domain. These works typically view this problem as a single-step process, in which a human operator gives an instruction and an automated agent is evaluated on its ability to execute it. In this paper we take the first step towards increasing the bandwidth of this interaction, and suggest a protocol for including advice, high-level observations about the task, which can help constrain the agent's prediction. We evaluate our approach on the blocks world task, and show that even simple advice can help lead to significant performance improvements. To help reduce the effort involved in supplying the advice, we also explore model self-generated advice which can still improve results.

PDF Abstract NAACL 2019 PDF NAACL 2019 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here