Improving Pseudo-label Training For End-to-end Speech Recognition Using Gradient Mask

8 Oct 2021  ·  Shaoshi Ling, Chen Shen, Meng Cai, Zejun Ma ·

In the recent trend of semi-supervised speech recognition, both self-supervised representation learning and pseudo-labeling have shown promising results. In this paper, we propose a novel approach to combine their ideas for end-to-end speech recognition model. Without any extra loss function, we utilize the Gradient Mask to optimize the model when training on pseudo-label. This method forces the speech recognition model to predict from the masked input to learn strong acoustic representation and make training robust to label noise. In our semi-supervised experiments, the method can improve the model performance when training on pseudo-label and our method achieved competitive results comparing with other semi-supervised approaches on the Librispeech 100 hours experiments.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here