Improving Tail Label Prediction for Extreme Multi-label Learning

1 Jan 2021  ·  Tong Wei, Wei-Wei Tu, Yu-Feng Li ·

Extreme multi-label learning (XML) works to annotate objects with relevant labels from an extremely large label set. Many previous methods treat labels uniformly such that the learned model tends to perform better on head labels, while the performance is severely deteriorated for tail labels. However, it is often desirable to predict more tail labels in many real-world applications. To alleviate this problem, in this work, we show theoretical and experimental evidence for the inferior performance of representative XML methods on tail labels. Our finding is that the norm of label classifier weights typically follows a long-tailed distribution similar to the label frequency, which results in the over-suppression of tail labels. Base on this new finding, we present two new modules: (1)~\algoa~learns to re-rank the predictions by optimizing a population-aware loss, which predicts tail labels with high rank; (2)~\algob~augments tail labels via a decoupled learning scheme, which can yield more balanced classification boundary. We conduct experiments on commonly used XML benchmarks with hundreds of thousands of labels, showing that the proposed methods improve the performance of many state-of-the-art XML models by a considerable margin (6\% performance gain with respect to PSP@1 on average).

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here