Improving the Tightness of Convex Relaxation Bounds for Training Certifiably Robust Classifiers

22 Feb 2020  ·  Chen Zhu, Renkun Ni, Ping-Yeh Chiang, Hengduo Li, Furong Huang, Tom Goldstein ·

Convex relaxations are effective for training and certifying neural networks against norm-bounded adversarial attacks, but they leave a large gap between certifiable and empirical robustness. In principle, convex relaxation can provide tight bounds if the solution to the relaxed problem is feasible for the original non-convex problem. We propose two regularizers that can be used to train neural networks that yield tighter convex relaxation bounds for robustness. In all of our experiments, the proposed regularizers result in higher certified accuracy than non-regularized baselines.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here