Improving Transformers using Faithful Positional Encoding

15 May 2024  ·  Tsuyoshi Idé, Jokin Labaien, Pin-Yu Chen ·

We propose a new positional encoding method for a neural network architecture called the Transformer. Unlike the standard sinusoidal positional encoding, our approach is based on solid mathematical grounds and has a guarantee of not losing information about the positional order of the input sequence. We show that the new encoding approach systematically improves the prediction performance in the time-series classification task.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods