Improving Uyghur ASR systems with decoders using morpheme-based language models

3 Mar 2020  ·  Zicheng Qiu, Wei Jiang, Turghunjan Mamut ·

Uyghur is a minority language, and its resources for Automatic Speech Recognition (ASR) research are always insufficient. THUYG-20 is currently the only open-sourced dataset of Uyghur speeches. State-of-the-art results of its clean and noiseless speech test task haven't been updated since the first release, which shows a big gap in the development of ASR between mainstream languages and Uyghur. In this paper, we try to bridge the gap by ultimately optimizing the ASR systems, and by developing a morpheme-based decoder, MLDG-Decoder (Morpheme Lattice Dynamically Generating Decoder for Uyghur DNN-HMM systems), which has long been missing. We have open-sourced the decoder. The MLDG-Decoder employs an algorithm, named as "on-the-fly composition with FEBABOS", to allow the back-off states and transitions to play the role of a relay station in on-the-fly composition. The algorithm empowers the dynamically generated graph to constrain the morpheme sequences in the lattices as effectively as the static and fully composed graph does when a 4-Gram morpheme-based Language Model (LM) is used. We have trained deeper and wider neural network acoustic models, and experimented with three kinds of decoding schemes. The experimental results show that the decoding based on the static and fully composed graph reduces state-of-the-art Word Error Rate (WER) on the clean and noiseless speech test task in THUYG-20 to 14.24%. The MLDG-Decoder reduces the WER to 14.54% while keeping the memory consumption reasonable. Based on the open-sourced MLDG-Decoder, readers can easily reproduce the experimental results in this paper.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here