Incentivizing Efficient Equilibria in Traffic Networks with Mixed Autonomy

6 May 2021  ·  Erdem Biyik, Daniel A. Lazar, Ramtin Pedarsani, Dorsa Sadigh ·

Traffic congestion has large economic and social costs. The introduction of autonomous vehicles can potentially reduce this congestion by increasing road capacity via vehicle platooning and by creating an avenue for influencing people's choice of routes. We consider a network of parallel roads with two modes of transportation: (i) human drivers, who will choose the quickest route available to them, and (ii) a ride hailing service, which provides an array of autonomous vehicle route options, each with different prices, to users. We formalize a model of vehicle flow in mixed autonomy and a model of how autonomous service users make choices between routes with different prices and latencies. Developing an algorithm to learn the preferences of the users, we formulate a planning optimization that chooses prices to maximize a social objective. We demonstrate the benefit of the proposed scheme by comparing the results to theoretical benchmarks which we show can be efficiently calculated.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here