Incomplete Multi-view Clustering via Diffusion Contrastive Generation

12 Mar 2025  ·  Yuanyang Zhang, Yijie Lin, Weiqing Yan, Li Yao, Xinhang Wan, Guangyuan Li, Chao Zhang, Guanzhou Ke, Jie Xu ·

Incomplete multi-view clustering (IMVC) has garnered increasing attention in recent years due to the common issue of missing data in multi-view datasets. The primary approach to address this challenge involves recovering the missing views before applying conventional multi-view clustering methods. Although imputation-based IMVC methods have achieved significant improvements, they still encounter notable limitations: 1) heavy reliance on paired data for training the data recovery module, which is impractical in real scenarios with high missing data rates; 2) the generated data often lacks diversity and discriminability, resulting in suboptimal clustering results. To address these shortcomings, we propose a novel IMVC method called Diffusion Contrastive Generation (DCG). Motivated by the consistency between the diffusion and clustering processes, DCG learns the distribution characteristics to enhance clustering by applying forward diffusion and reverse denoising processes to intra-view data. By performing contrastive learning on a limited set of paired multi-view samples, DCG can align the generated views with the real views, facilitating accurate recovery of views across arbitrary missing view scenarios. Additionally, DCG integrates instance-level and category-level interactive learning to exploit the consistent and complementary information available in multi-view data, achieving robust and end-to-end clustering. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods