Incorporating Dependency Trees Improve Identification of Pregnant Women on Social Media Platforms

The increasing popularity of social media lead users to share enormous information on the internet. This information has various application like, it can be used to develop models to understand or predict user behavior on social media platforms. For example, few online retailers have studied the shopping patterns to predict shopper{'}s pregnancy stage. Another interesting application is to use the social media platforms to analyze users{'} health-related information. In this study, we developed a tree kernel-based model to classify tweets conveying pregnancy related information using this corpus. The developed pregnancy classification model achieved an accuracy of 0.847 and an F-score of 0.565. A new corpus from popular social media platform Twitter was developed for the purpose of this study. In future, we would like to improve this corpus by reducing noise such as retweets.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here