Incorporating Features Learned by an Enhanced Deep Knowledge Tracing Model for STEM/Non-STEM Job Prediction

6 Jun 2018Chun-kit YeungZizheng LinKai YangDit-yan Yeung

The 2017 ASSISTments Data Mining competition aims to use data from a longitudinal study for predicting a brand-new outcome of students which had never been studied before by the educational data mining research community. Specifically, it facilitates research in developing predictive models that predict whether the first job of a student out of college belongs to a STEM (the acronym for science, technology, engineering, and mathematics) field... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet