Individual Fairness for $k$-Clustering

17 Feb 2020  ·  Sepideh Mahabadi, Ali Vakilian ·

We give a local search based algorithm for $k$-median and $k$-means (and more generally for any $k$-clustering with $\ell_p$ norm cost function) from the perspective of individual fairness. More precisely, for a point $x$ in a point set $P$ of size $n$, let $r(x)$ be the minimum radius such that the ball of radius $r(x)$ centered at $x$ has at least $n/k$ points from $P$. Intuitively, if a set of $k$ random points are chosen from $P$ as centers, every point $x\in P$ expects to have a center within radius $r(x)$. An individually fair clustering provides such a guarantee for every point $x\in P$. This notion of fairness was introduced in [Jung et al., 2019] where they showed how to get an approximately feasible $k$-clustering with respect to this fairness condition. In this work, we show how to get a bicriteria approximation for fair $k$-clustering: The $k$-median ($k$-means) cost of our solution is within a constant factor of the cost of an optimal fair $k$-clustering, and our solution approximately satisfies the fairness condition (also within a constant factor). Further, we complement our theoretical bounds with empirical evaluation.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here