Indoor RGB-D Compass From a Single Line and Plane

CVPR 2018  ·  Pyojin Kim, Brian Coltin, H. Jin Kim ·

We propose a novel approach to estimate the three degrees of freedom (DoF) drift-free rotational motion of an RGB-D camera from only a single line and plane in the Manhattan world (MW). Previous approaches exploit the surface normal vectors and vanishing points to achieve accurate 3-DoF rotation estimation. However, they require multiple orthogonal planes or many consistent lines to be visible throughout the entire rotation estimation process; otherwise, these approaches fail. To overcome these limitations, we present a new method that estimates absolute camera orientation from only a single line and a single plane in RANSAC, which corresponds to the theoretical minimal sampling for 3-DoF rotation estimation. Once we find an initial rotation estimate, we refine the camera orientation by minimizing the average orthogonal distance from the endpoints of the lines parallel to the MW axes. We demonstrate the effectiveness of the proposed algorithm through an extensive evaluation on a variety of RGB-D datasets and compare with other state-of-the-art methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here