Inertial Block Proximal Methods for Non-Convex Non-Smooth Optimization

We propose inertial versions of block coordinate descent methods for solving non-convex non-smooth composite optimization problems. Our methods possess three main advantages compared to current state-of-the-art accelerated first-order methods: (1) they allow using two different extrapolation points to evaluate the gradients and to add the inertial force (we will empirically show that it is more efficient than using a single extrapolation point), (2) they allow to randomly picking the block of variables to update, and (3) they do not require a restarting step... We prove the subsequential convergence of the generated sequence under mild assumptions, prove the global convergence under some additional assumptions, and provide convergence rates. We deploy the proposed methods to solve non-negative matrix factorization (NMF) and show that they compete favorably with the state-of-the-art NMF algorithms. Additional experiments on non-negative approximate canonical polyadic decomposition, also known as non-negative tensor factorization, are also provided. read more

PDF Abstract ICML 2020 PDF
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here