Inexact SARAH Algorithm for Stochastic Optimization

25 Nov 2018  ·  Lam M. Nguyen, Katya Scheinberg, Martin Takáč ·

We develop and analyze a variant of the SARAH algorithm, which does not require computation of the exact gradient. Thus this new method can be applied to general expectation minimization problems rather than only finite sum problems... While the original SARAH algorithm, as well as its predecessor, SVRG, require an exact gradient computation on each outer iteration, the inexact variant of SARAH (iSARAH), which we develop here, requires only stochastic gradient computed on a mini-batch of sufficient size. The proposed method combines variance reduction via sample size selection and iterative stochastic gradient updates. We analyze the convergence rate of the algorithms for strongly convex and non-strongly convex cases, under smooth assumption with appropriate mini-batch size selected for each case. We show that with an additional, reasonable, assumption iSARAH achieves the best known complexity among stochastic methods in the case of non-strongly convex stochastic functions. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here