Inference and De-Noising of Non-Gaussian Particle Distribution Functions: A Generative Modeling Approach

5 Oct 2021  ·  John Donaghy, Kai Germaschewski ·

The particle-in-cell numerical method of plasma physics balances a trade-off between computational cost and intrinsic noise. Inference on data produced by these simulations generally consists of binning the data to recover the particle distribution function, from which physical processes may be investigated. In addition to containing noise, the distribution function is temporally dynamic and can be non-gaussian and multi-modal, making the task of modeling it difficult. Here we demonstrate the use of normalizing flows to learn a smooth, tractable approximation to the noisy particle distribution function. We demonstrate that the resulting data driven likelihood conserves relevant physics and may be extended to encapsulate the temporal evolution of the distribution function.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods