Inference and Denoise: Causal Inference-based Neural Speech Enhancement

2 Nov 2022  ·  Tsun-An Hsieh, Chao-Han Huck Yang, Pin-Yu Chen, Sabato Marco Siniscalchi, Yu Tsao ·

This study addresses the speech enhancement (SE) task within the causal inference paradigm by modeling the noise presence as an intervention. Based on the potential outcome framework, the proposed causal inference-based speech enhancement (CISE) separates clean and noisy frames in an intervened noisy speech using a noise detector and assigns both sets of frames to two mask-based enhancement modules (EMs) to perform noise-conditional SE. Specifically, we use the presence of noise as guidance for EM selection during training, and the noise detector selects the enhancement module according to the prediction of the presence of noise for each frame. Moreover, we derived a SE-specific average treatment effect to quantify the causal effect adequately. Experimental evidence demonstrates that CISE outperforms a non-causal mask-based SE approach in the studied settings and has better performance and efficiency than more complex SE models.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here