Inference for high-dimensional exchangeable arrays

10 Sep 2020  ·  Harold D. Chiang, Kengo Kato, Yuya Sasaki ·

We consider inference for high-dimensional separately and jointly exchangeable arrays where the dimensions may be much larger than the sample sizes. For both exchangeable arrays, we first derive high-dimensional central limit theorems over the rectangles and subsequently develop novel multiplier bootstraps with theoretical guarantees. These theoretical results rely on new technical tools such as Hoeffding-type decomposition and maximal inequalities for the degenerate components in the Hoeffiding-type decomposition for the exchangeable arrays. We exhibit applications of our methods to uniform confidence bands for density estimation under joint exchangeability and penalty choice for $\ell_1$-penalized regression under separate exchangeability. Extensive simulations demonstrate precise uniform coverage rates. We illustrate by constructing uniform confidence bands for international trade network densities.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here